Block of transient outward-type cloned cardiac K+ channel currents by quinidine.
نویسندگان
چکیده
The antiarrhythmic drug quinidine has been shown to block several types of K+ channel currents in cardiac preparations including the transient outward current (Ito). To characterize the molecular mechanism of quinidine block, a cloned Ito-type cardiac K+ channel (RHK1) was expressed in Xenopus oocytes, and drug effects were examined on whole-cell and single-channel currents. Extracellular application of quinidine reduced whole-cell RHK1 current amplitude in a concentration-dependent manner. The block was voltage dependent, with an IC50 of 1.69 mM at 0 mV, and the value decreased to 875 microM at +60 mV. Quinidine significantly slowed the current inactivation time course during voltage-clamp pulses without changing the rate of activation or the steady-state inactivation. To test the channel-state dependence of quinidine block, the cells were "rested" in the presence of quinidine (500 microM) for 2 to 3 minutes before applying depolarizing pulses to +60 mV. During the first pulse, the current inactivation rate was slower than control, but the peak current was only reduced by less than 5%. Subsequent pulses reduced the peak current amplitude to approximately 50% of control. These results suggest that quinidine blocks the open channel and that the drug must first dissociate before the channel can close, thereby causing a crossover in current tracings. In measurements of single-channel current from cell-attached patches, open time was reduced by quinidine in a concentration-dependent manner. Single-channel current amplitude was not altered by quinidine. Application of quinidine to the intracellular side of inside-out patches had an effect similar to that obtained from cell-attached patches but at 10-fold lower concentrations. External quinidine may therefore have to pass into or through the cell membrane to reach its blocking site.
منابع مشابه
جریانهای یونی کانالهای پتاسیمی و کلسیمی در سلولهای ایزوله شده عضله صاف سمینال وزیکول خوکجه و مهاراین جریانها بوسیله Glibenclamide
Smooth muscle cells of seminal vesicle exhibit excitatcry junction patential on nerve stimulation and can fire evoked) action potential (1). However) the type of ion channels that underlie this electrical activity have not been described. I have investigated the type and pharmacology of ion channel in freshly isolated smooth muscle cells from the guinea-pig seminal vesicle using whole-cell patc...
متن کاملElectrophysiological and pharmacological correspondence between Kv4.2 current and rat cardiac transient outward current.
OBJECTIVE The transient outward current (ITO) plays an important role in early repolarization and overall time course of the cardiac action potential. At least two K+ channel alpha-subunits cloned from cardiac tissue (Kv1.4 and Kv4.2) encode rapidly inactivating channels. The goal of this study was to determine functional and pharmacological properties of Kv4.2 expressed in mammalian cells, esp...
متن کاملHeteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels.
Toxins isolated from scorpion, snake, and spider venoms are valuable tools to probe the physiologic function and structure of ion channels. In this study, we have isolated three new toxins (heteropodatoxins) from the venom of a spider, Heteropoda venatoria. These toxins are structurally similar peptides of 29 to 32 amino acids and share sequence homology with hanatoxins isolated from the venom ...
متن کاملTime-dependent Outward Currents through the Inward Rectifier Potassium Channel IRK1
Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44-1.1 mM) or putrescine (approximately 0.4 mM) to the intracellular milieu where endogenous polyamines rem...
متن کاملShortening of the action potential and reduction of pacemaker activity by lidocaine, quinidine, and procainamide in sheep cardiac purkinje fibers. An effect on Na or K currents?
The ionic mechanism underlying the shortening of the action potential and the reduction in pacemaker activity by lidocaine, quinidine, and procainamide in sheep cardiac Purkinje fibers was investigated using the two-microelectrode voltage clamp technique. In the presence of lidocaine (1.85 to 3.7 x 10"M), steady state currents were shifted outward over a broad range of potentials. In contrast, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 73 2 شماره
صفحات -
تاریخ انتشار 1993